A Policy-switching learning approach for adaptive spoken dialogue agents
نویسندگان
چکیده
The reinforcement learning paradigm has been adopted for inferring optimized and adaptive spoken dialogue agents. Such agents are typically learnt and tested without combining competing agents that may yield better performance at some points in the conversation. This paper presents an approach that learns dialogue behaviour from competing agents—switching from one policy to another competing one—on a previously proposed hierarchical learning framework. This policy-switching approach was investigated using a simulated flight booking dialogue system based on different types of information request. Experimental results reported that the induced agent using the proposed policy-switching approach yielded 8.2% fewer system actions than three baselines with a fixed type of information request. This result suggests that the proposed approach is useful for learning adaptive and scalable spoken dialogue agents.
منابع مشابه
On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملLearning Adaptive Referring Expression Generation Policies for Spoken Dialogue Systems using Reinforcement Learning
Adaptive generation of referring expressions in dialogues is beneficial in terms of grounding between the dialogue partners. However, handcoding adaptive REG policies is hard. We present a reinforcement learning framework to automatically learn an adaptive referring expression generation policy for spoken dialogue systems.
متن کاملLearning to Adapt to Unknown Users: Referring Expression Generation in Spoken Dialogue Systems
We present a data-driven approach to learn user-adaptive referring expression generation (REG) policies for spoken dialogue systems. Referring expressions can be difficult to understand in technical domains where users may not know the technical ‘jargon’ names of the domain entities. In such cases, dialogue systems must be able to model the user’s (lexical) domain knowledge and use appropriate ...
متن کاملOptimizing Dialogue Strategy Learning Using Learning Automata
Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlyi...
متن کامل